
r;A ' I,t) r-F~rrn Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

'wsie I hour per re" one. including the um fot revw l tV instmotams. se ichig vigutiv dai sources. ohe lg sid

i of In..tlo. SOWi oMfflft5 talrklng this bufen etfitue Ot WW hat SIM01 Of this I Ill of hviano aion,

el Ser ee. Oiredotals for intormeln Operbion and Retom. 1215 Jeletln Davis 1igw. Sult 12D4. Arligton.
rk ReduOleon Ptoied (0704-0188). Washilglo. DC 2MO5.

AD-A227 160 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1990 Special Technical

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Making Real-Time Reactive Systems Reliable NAG2-593

6. AUTHOR(S)

Keith Marzullo, Mark Wood

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) S. PERFORMING ORGANIZATION
REPORT NUMBER

Keith Marzullo, Assistant Professor

Department of Computer Science, Cornell University 90-1155

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

DARPA/ISTO

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABIUTY STATEMENT . 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

No abstract given. O T IC
ELECTE0 ,O T 3= 0 IMW

14. SUBJECT TERMS 15. NUMBER OF PAGES

8
16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 20. UIMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED

NSN ?S0.01-Ml6O-S5oo 140M 1 I 11 1 11
PmeeWd ANS SW. IS

IM102



Making Real-Time Reactive
Systems Reliable*

Keith Marzullo
Mark Wood

TR 90-1155
September 1990

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*This position paper was read at the Fourth European SIGOPS Workshop,

September 3-5, 1990, Bologna, Italy. This work was supported by the Defense
Advanced Research Projects Agency (DoD) under NASA Ames Grant Number
NAG2-593, Contract N00140-87-C-8904. The views, opinions, and findings
contained in this report are those of the authors and should not be construed as an
official Department of Defense position, policy, or decision. This work was also
partially supported by a grant from Xerox.



Making Real-Time Reactive Systems Reliable*

Keith Marzullo Mark Wood
marzullo@cs.cornell.edu wood@cs.cornell.edu

Cornell University

Department of Computer Science
Ithaca, New York 14853

March 30, 1990

A reactive system [3] is characterized by a control program that interacts
with an environment (or controlled program). The control program monitors
the environment and reacts to significant events by sending commands to the
environment. This structure is quite general. Not only are most embedded
real-time systems reactive systems, but so are monitoring and debugging
systems and distributed application management systems.

Since reactive systems are usually long-running and may control physical
equipment, fault-tolerance is vital. Our research tries to understand the
principal issues of fault-tolerance in real-time reactive systems and to build
tools that allow a programmer to design reliable, real-time reactive systems.

A reactive system has a structure much like that of a client-server system
(see Figure 1). Both systems contain components that are input-driven-
servers are input-driven by the clients, and the control program is input-
driven by its environment. This is an important similarity, since there exist
techniques for making deterministic servers fault-tolerant [1,7]. There are,
however, two essential differences between reactive systems and client-server
systems:

1. Whereas a client explicitly invokes a server, the environment does not
explicitly invoke the control program. Instead, the environment is in-

*This position paper was read at the Fourth European SIGOPS Workshop, September
3-5 1990, Bologna, Italy. This work was supported by the Defense Advanced Research
Projects Agency (DoD) under NASA Ames grant number NAG 2-593, Contract N00140-
87-C-8904. The views, opinions, and findings contained in this report are those of the
authors and should not be construed as an official Department of Defense position, policy,
or decision. This work was also partially supported by a grant from Xerox.

1



strumented with sensors and actuators that allow the control program
to read and change the state of the environment.

2. Since the environment does not explicitly invoke the control program,
any synchronization between these programs must be done in ways
other than by using rendezvous. One technique is to express the system
specification in terms of time; that is, to set hard real-time constraints
on the execution of the control program. We call a reactive system
with real-time constraints a real-time reactive system.

Client-server

return

server client

call

Reactive
actuators

control
environmentprogram

sensors

Figure 1: System Structures

In order to make real-time reactive systems reliable, several issues must
be addressed:

How can a control program be built to tolerate failures of sensors
and actuators? To achieve this, we have developed a w, thodology for
transforming a control program that references physic-. values into one
that tolerates sensors that can fail and can return inaccurate values.

e How can the real-time reactive system be built to tolerate failures of
the control program? Towards this goal, we are investigating whether
the techniques presented in [1,7] can be ex.ended to real-time reactive
systems.

2



* How can the environment be specified in a way that is useful for writing
a control program? Towards this goal, we are investigating whether
a systpm with real-time constraints can be expressed as an equivalent
system without such constraints.

Meta

In the Meta project [6,2] we have been developing an architecture based
on sensors and actuators that supports the development of reliable reacti-e
systems. This architecture is very general-for example, it supports man-
agement of distributed applications as well as process control systems. The
major issues in reactive systems for distributed application management are
instrumentation of the application, representation of the application. and
efficient and fault-tolerant monitoring of the application.

The functional architecture of Meta is shown in Figure 2. A programmer
follows two steps using this to develop the control program of a distribu-
ted application. First, the programmer instrument he application and its
runtime environment with sensors and actuators. A set of sensors and actu-
ators are provided by default, including sensors on machine load, allocated
resources, and the global variables of running programs. Second, the pro-
grammer describes the application using an object-oriented data model and
writes the control program referencing this data model. The control pro-
gram can both make direct calls on the data model and register a set of
policy rules that Meta will monitor and enforce.

I monitoring and control Cd

I data modelI

I es I actuators1

Figure 2: Meta Functional Architecture

Sensors are functions that return typed values of the application state
or the environment state. Sensors may be polled for the current value of the on For
function, and a watch may be set on a sensor, instructing Meta to notify the ZA&I
client when the sensor value satisfies some user-defined predicate. Sensors 1 0
and actuators are implemented by stubs that run on machines supporting the iced 0

:ation

3 By
Distributi
Availability Codes

Avail and/or
Dist SpeolaJa



application. In order to instrument a process with a new sensor or actuator,
the process being instrumented registers a procedure with the sensor stub.
The stub is responsible for responding to poll requests and for periodically
checking to see if any outstanding watches are satisfied. Additionally. an
instrumented process can notify the stub that a specified sensor's value has
changed, allowing the stub to reevaluate the affected outstanding watches.

Once instrumented, the programmer specifies the structure of the appli-
cation by using an object-oriented data modeling language called Lomita.
Through Lomita. the application is cast as a temporal object-oriented data-
base. Entity and relationship sets have attributes that fall into one of three
categories:

1. Properties, whose values are static for a given entity. For example, the
type of a machine is a property. The attributes comprising a key must
be properties.

2. Sensors, whose values are dynamic for a given entity. A sensor at-
tribute can be defined as one of the sensors supplied by the application,
or its value can be derived from the other sensors.

3. Actuators, which are invoked on an entity. An actuator attribute is
defined as one of the actuators supplied by the application.

The intended behavior of the control program is described as a set of
Lomita rules. A rule states the action to be performed when a specified
condition of the application is observed. Conditions are expressed over sen-
sor values using a real-time extension of temporal interval logic [8]. For
example, a simple rule might be that if the number of processes compris-
ing a replicated service is too low or the average service load is too high.
then start a new process on the lightest-loaded machine not yet running the
service. Lomita will redundantly monitor this condition and guarantee that
exactly one version of the rule will react when the condition is satisfied.

We have implemented a version of Meta that runs on UNIX and have
used it to control some simple applications. We are now developing Lomita
and are applying Meta to more complex applications, such as a reliable
version of parallel make, a seismological monitoring application, and a dis-
tributed configuration management system. Meta is built on top of the
Isis distributed toolkit [2], making many of the issues of fault-tolerance and
agreement simple to address.

We are also extending Meta for process control applications. This is a
significant extension, since the control program is monitoring and controlling

4



a physical svtem. The next section addresses one of the issues raised by
this new setting.

Making Sensors Reliable

One of the fundamental issues of making real-time reactive systems reliable
is how sensor failures can be masked [4,5]. We have developed a methodology
for transforming a control program that references physical values into one
that tolerates sensors that can fail and can return inaccurate values. Our
methodology is as follows:

1. A specification of the control program is written in terms of the state
variables of the physical system. For example, the specification of a
program controlling a chemical reaction vessel would refer to a variable
T whose value is assumed to be the temperature of the vessel.

2. Each physical state variable referenced by the specification is replaced
with a reference to an abstract sensor. An abstract sensor provides a
set of values (such as an interval) that contains the physical variable of
interest. At this step, uncertainty in sensor values becomes an issue,
and the specification must be re-examined and possibly changed to
accommodate this uncertainty. Ideally, the specification should be
strengthened, but in some cases this may not be possible.

3. A control program is written based on the specification produced by
Step 2. This program references abstract sensors that are assumed to
always contain the correct value of the physical variables.

4. For each abstract sensor referenced by the program written in Step 3,
a set of abstract sensors are written such that they fail independently.
Each abstract sensor is implemented using a concrete sensor, which is a
physical device that "reads" a physical variable, such as a thermometer
or a pressure gauge. This step will require some knowledge of the
physical process being controlled as well as the specification of the
concrete sensor.

5. A fault-tolerant averaging algorithm is used with these replicated ab-
stract sensor values in order to calculate another abstract sensor that
is correct even if some of the original sensors are incorrect. The av-
eraging algorithm assumes that no more than f out of the n abstract

5



sensors are incorrect, where f is a parameter. The relation between n
and f (outside of 0 < f < n) depends on the way sensors can fail.

Note that programs written in Lomita reference abstract sensors, and
Meta provides the mechanisms to implement abstract sensors from concrete
sensors assuming a simple failure model. The programmer need implement
abstract sensors only for specialized applications; for most applications the
Meta system handles Steps 4 and 5.

Several issues with our approach remain open. One interesting problem
is that of accommodating abstract sensors and actuators in process control

problem specifications. In Step 2 of the methodology, the developer needs to
examine the impact of uncertainty on the specification. All process control
systems must accommodate such uncertainty; our methodology, however,
makes this problem explicitly part of the refinement of the problem. We
are now looking at ways to express and reason about such uncertainty in
process control systems.

Acknowledgements Ken Birman and Robert Cooper have actively con-
tributed to the design of Meta. Our research into the specification of real-
time systems is in collaboration with Fred Schneider.

References

[1] Jacob I. Aizikowitz. Designing Distributed Services using Refinement
Mappings. PhD thesis, Cornell University, Department of Computer

Science, January 1990.

[2] Kenneth Birman and Keith Marzullo. ISIS and the Meta project. Sun

Technology, 2(3):90-104, Summer 1989.

[3] D. Harel and A. Pneuli. On the Development of Reactive Systems, pages
477-498. Springer-Verlag, New York, 1985.

[4] Keith Marzullo. Implementing fault-tolerant sensors. Technical Report
TR 89-997, Cornell University, January 1990. Submitted for publication.

[5] Keith Marzullo and Paul Chew. Efficient algorithms for masking sensor
failures. In preparation, 1990.

6



[6] Keith Marzullo, Robert Cooper, Mark Wood, and Ken Birman. Tools
for distributed application management. Technical Report TR 90-1136,
Cornell University, June 1990. Submitted for publication.

[7] Fred B. Schneider. The state machine approach: A tutorial. Computing
Surveys, 22(3), September 1990.

[8] R. L. Schwartz, P. M. Melliar-Smith, and F. H. Vogt. An interval logic
for higher-level temporal reasoning. In Proceedings of the Second Sym-
posium on Principles of Distributed Computing, pages 173-186. ACMI
SIGPLAN/SIGOPS, 1983.

7


